
Recommender Systems

Dr. Sarabjot Singh
Co-founder & Chief Data Scientist

ssanand@tatrasdata.com

Too many Items, too little time

Why search when you can filter?

• Users lost in a sea of ‘items’, I

• Real estate of the ‘window’ to Items is limited

• Information Retrieval Vs. Information Filtering

– Explicit search terms Vs. Implicit Consumption Traits

– The user gets what (s)he wants without needing to ‘ask’ for it

WHAT PROBLEM DO RECOMMENDER SYSTEMS
SOLVE?

TYPES OF RECOMMENDER SYSTEMS

• Content based Filtering
– Track what the user consumes
– Recommend Items similar to those

consumed in the past
– Need item descriptions
– Narrow Vision/ Low diversity

• Collaborative Filtering
– Track all user consumption
– No need for item descriptions
– Recommend items consumed by users

who have a similar consumption pattern to
the user of interest

– More serendipity
– First automated recommender based on

collaborative filtering GroupLens (1994)

• Hybrid Approaches

– Combines both approaches to address
shortcomings

RECOMMENDATION AS RATING PREDICTION

• Recommendation can be viewed as a rating prediction problem
– Given a set of triples

– approximate a function

– The accuracy of the function is computed using metrics such as

where n is the number of triples in the test set

and

𝑢𝑗 , 𝑖𝑘 , 𝑟𝑗𝑘 : 𝑢𝑗 ∈ 𝑈, 𝑖𝑘 ∈ 𝐼, 𝑟𝑗𝑘 ∈ {1,2, . . , 𝑟}

𝑓: 𝑢𝑗 , 𝑖𝑘 → 1, 𝑟

𝑚𝑠𝑒 =
1

𝑛
෍

𝑗,𝑘

𝑟𝑗𝑘 − 𝑓(𝑢𝑗 , 𝑖𝑘)
2

𝑚𝑎𝑒 =
1

𝑛
෍

𝑗,𝑘

|𝑟𝑗𝑘 − 𝑓(𝑢𝑗 , 𝑖𝑘)|

THE DATA: USER ITEM RATING MATRIX (R)

Cinematography
Special Effects

Dharma
Action/Thriller

Amir Khan

Animation
Disney
Pixar

Action Heroes
Comedy 𝑓: 𝑈 × 𝐼 → [1, 𝑟]𝑓: 𝑈 × 𝐼 × 𝐶 → [1, 𝑟]

USER-BASED COLLABORATIVE FILTERING

• The basic premise is that similar users like similar items
– Find the neighbourhood consisting of k users judged to be most similar

for the active user, ua

– Recommend items to user, ua, that have been liked by users in their
neighbourhood, not already consumed by ua

– The result: “People who liked those also liked this”

• Calculating User Similarity
– Cosine Similarity

𝑠𝑎𝑏 = 𝑐𝑜𝑠𝜃 =
𝑣𝑎. 𝑣𝑏
𝑣𝑎 𝑣𝑏

EXAMPLE

What do you think the missing ratings are going to be?

PREDICTING THE RATINGS

• Rating predicted for each item not previously consumed by
the active user

• i1 = (0.955*1)/0.955 = 1
• i2 = (0.517*2+0.129*3)/0.646 = 1.421/0.646 = 2.2
• i4 = (0.735*4+0.517*3-+0.129*2)/1.381 = 3.43

ෞ𝑟𝑎𝑗 =
σ𝑢𝑘∈𝑁(𝑎)

𝑠𝑎𝑘𝑟𝑘𝑗

σ𝑢𝑘∈𝑁(𝑎)
𝑠𝑎𝑘

COLD START, NEW ITEM LATENCY & SPARSITY

• Cold Start
– Items not rated by any user, cannot be recommended

– Users who have not consumed/rated can’t be recommended to
• Fall back to Most Popular Items (Impersonalized)

• The time between an item being introduced to the item catalogue
and the first time it gets recommended is called Item Latency
– How can this be reduced?

• Sparsity of Ratings often leads to inaccurate estimation of similarity
as well as ratings

• Should all items be treated equal?
– Everyone loves Spiderman – does he ad value to similarity measurement

ALTERNATIVE SIMILARITY MEASURES

• The adjusted cosine similarity

– Used in user based collaborative filtering to adjust for differences in
user rating scales

𝑠𝑎𝑏 =
σ𝑖𝑗∈𝑅(𝑎)∩𝑅(𝑏)

(𝑟𝑎𝑗 − 𝜇𝑎)(𝑟𝑏𝑗 − 𝜇𝑏)

σ𝑖𝑗∈𝑅(𝑎)
(𝑟𝑎𝑗 − 𝜇𝑎)

2 σ𝑖𝑗∈𝑅(𝑏)
(𝑟𝑏𝑗 − 𝜇𝑏)

2

PREDICTING THE RATINGS

• Adjusting for users with different rating scales

• i1 = 3 + (0.314*(1-2.67))/0.314 = 1.33
• i2 = 3 + (0.288*(2-3))/0.288 = 2
• i4 = 3 + (0.749*(4-2.75)+0.288(3-3))/1.037 = 3.9

ෞ𝑟𝑎𝑗 = 𝜇𝑗 +
σ𝑢𝑘∈𝑁(𝑎)

𝑠𝑎𝑘(𝑟𝑘𝑗−𝜇𝑗)

σ𝑢𝑘∈𝑁(𝑎)
𝑠𝑎𝑘

IMPACT OF ADJUSTED COSINE

ITEM BASED COLLABORATIVE FILTERING

Users with similar
ratings on movies
other than ij

Items rated by uk with
similar ratings to ij
from users other than
uk

• Instead of finding the neighbourhood of a user, find the neighbourhood of the target
item from items rated by the active user

• Similarity of items computed using Pearson Correlation

• As the number of common users rating the items may be small, the similarity score is
often “dampened”

• Now ratings for items for the active user are calculated using

𝜌𝑖𝑗 =
σ𝑢∈𝑈(𝑖)∩𝑈(𝑗) 𝑟𝑢𝑖 − 𝜇𝑖 𝑟𝑢𝑗 − 𝜇𝑗

σ𝑢∈𝑈(𝑖)∩𝑈(𝑗) 𝑟𝑢𝑖 − 𝜇𝑖
2 σ𝑢∈𝑈(𝑖)∩𝑈(𝑗) 𝑟𝑢𝑗 − 𝜇𝑗

2

𝑠𝑖𝑗 =
𝑛𝑖𝑗

𝜆2 + 𝑛𝑖𝑗
𝜌𝑖𝑗

ෞ𝑟𝑎𝑘 =
σ𝑖𝑗∈𝑁(𝑘)

𝑠𝑘𝑗𝑟𝑎𝑗

σ𝑖𝑗∈𝑁(𝑘)
𝑠𝑘𝑗

ITEM-BASED COLLABORATIVE FILTERING

EXAMPLE

• i1 = (0.945*4+1*4+0.94*1)/2.885 = 3.02
• i2 =(1*1)/1 = 1
• i4 = ?

Given the ratings matrix

Using Pearson's correlation
between item vectors we
can calculate the pairwise
similarity of items

Assuming we are looking for movies to recommend to u4:

Neighbourhood based approaches

• How dependent is the predicted rating on the similarity of the
neighbours?

• Weights add up to one, so it’s the relative similarity of
neighbours that counts

ෞ𝑟𝑎𝑘 =
σ𝑖𝑗∈𝑁(𝑘)

𝑠𝑘𝑗𝑟𝑎𝑗

σ𝑖𝑗∈𝑁(𝑘)
𝑠𝑘𝑗

Rating Prediction using Matrix Factorization

 i1 i2 i3 i4 i5 i6

Tim 2 4 3

Tom 3 4 3 1

Peter 1 3 4

Paul 4 4 1

Kathy 3 2 4

 h1 h2

i1

i2

i3

i4

i5

i6

 h1 h2

Tim

Tom

Peter

Paul

Kathy

Rating Prediction using Matrix Factorization

 i1 i2 i3 i4 i5 i6

Tim 2 4 3

Tom 3 4 3 1

Peter 1 3 4

Paul 4 4 1

Kathy 3 2 4

 i1 i2 i3 i4 i5 i6

Tim 1.01 2.10 3.78 3.14 4.37 2.21

Tom 0.42 1.32 3.18 3.78 3.11 0.73

Peter 0.99 1.92 3.16 2.22 3.85 2.26

Paul 0.64 1.74 3.88 4.29 3.95 1.21

Kathy 1.69 2.93 4.2 1.98 5.61 3.97

 h1 h2

Tim 1.38 1.22

Tom 0.51 1.7

Peter 1.39 0.78

Paul 0.80 1.88

Kathy 2.41 0.46

 h1 h2

i1 0.69 0.04

i2 1.13 0.43

i3 1.46 1.43

i4 0.41 2.10

i5 2.09 1.2

i6 1.66 -0.06

MATRIX FACTORIZATION

• The ratings are a reflection of the user’s taste that is driven by certain domain

dependant latent factors e.g. plot, actor, cinematography etc.

• Assuming k latent factors, we can approximate the rating matrix

where P and Q are n x k and m x k matrices respectively

• P is a representation of users based on their ‘k’ interests

• Q is a representation of movies based on its ability to fulfil the user’s preferences

• Typically use an iterative optimization algorithm to learn P and Q such that, they

minimize

where, b = 0.02 and Ƹ𝑟𝑖𝑗 = 𝑝𝑖 . 𝑞𝑗
𝑇

• Multiplying P and Q to obtain an approximation of R provides ratings to items, predicted

for a user who had not previously consumed (or at least not rated) the item

𝑅 ≈ 𝑃𝑄

෍

𝑖𝑗

𝑟𝑖𝑗 − ෞ𝑟𝑖𝑗
2
+
𝛽

2
| 𝑃 |2 + | 𝑄 |2

Number of Parameters?

def MF(X,num_dims,step_size,epochs,thres,lam_da):
import scipy
P = scipy.sparse.rand(X.shape[0],num_dims,1,format='csr')
P=scipy.sparse.csr_matrix(P/scipy.sparse.csr_matrix.sum(P,axis=1))
Q = scipy.sparse.rand(num_dims, X.shape[1],1,format='csr')
Q=scipy.sparse.csr_matrix(Q/scipy.sparse.csr_matrix.sum(Q,axis=0))

prev_error = 0
for iterat in range(epochs):

errors = X - make_sparse(P.dot(Q),X.indices,X.indptr)
mse=np.sum(errors.multiply(errors))/len(X.indices)
if abs(mse-prev_error) > thres:

P_new = P+step_size*2*(errors.dot(Q.T)-lam_da*P)
Q_new = Q+step_size*2*(P.T.dot(errors)-lam_da*Q)
P = P_new
Q = Q_new
prev_error = mse

else:
break

if iterat%1 == 0:
print(iterat,mse)

print(P.dot(Q).todense())
return P,Q

Movielens

• Number of Users: 610

• Number of movies: 9724

• Number of Ratings: 100,836

95 1.224751090129586

96 1.215996873239419

97 1.2074389361582032

98 1.1990709981876604

99 1.1908870413582395

0 12.658056670291035

1 12.3679403784389

2 12.054535441993796

3 11.71142099647553

4 11.333958784038623

5 10.919755000620956

……

……

● Stochastic Gradient Descent

● Prediction Error for each user, item pair

● Update P and Q

● Loop through all user, item pairs

● Alternating Least Squares (ALS)

● qi and pu are not known, hence convex cost function

● Alternately fix qi and pu so as to make the cost function quadratic
and hence making the cost function convex

Stochastic Gradient Descent

𝑒𝑢𝑖 = 𝑟𝑢𝑖 − 𝑞𝑖
𝑇𝑝𝑢

𝑞𝑖 ← 𝑞𝑖 + 𝛾(𝑒𝑢𝑖 . 𝑝𝑢 − 𝜆. 𝑞𝑖)

𝑝𝑢 ← 𝑝𝑢 + 𝛾(𝑒𝑢𝑖 . 𝑞𝑖 − 𝜆. 𝑝𝑢)

Incorporating Biases

● Decomposing the rating

𝑟𝑢𝑖 = 𝜇 + 𝑟𝑖 + 𝑟𝑢 + Ƹ𝑟𝑢𝑖

Average
rating Item

bias

User

bias

Everyone loves Star Wars (ri=0.8)
Derek is a harsh rater (ru= -0.4)
Average rating = 3.4

Derek’s interaction with Star Wars contributed 0.5
rui = 3.4+0.8-0.4+0.5 = 4.3

How do we learn the biases?

Interaction

rating

How does the

user deviate from

the average?

Learning the biases

● Decouple the computation of bi and bu

● l1 and l2 are regularization parameters that shrink the
biases towards zero when the number of ratings for an
item or ratings by a user is small

● Alternatively, compute bi and bu symmetrically by minimizing
the cost function

𝑏𝑖 =
σ𝑢∈𝑅(𝑖)(𝑟𝑢𝑖 − 𝜇)

𝜆1 + |𝑅 𝑖 |

𝑏𝑢 =
σ𝑖∈𝑅(𝑢)(𝑟𝑢𝑖 − 𝜇 − 𝑏𝑖)

𝜆2 + |𝑅 𝑢 |

𝑏∗ = argmin
(𝑏𝑖,𝑏𝑢)

෍

(𝑢,𝑖)∈𝒦

(𝑟𝑢𝑖 − 𝜇 − 𝑏𝑖 − 𝑏𝑢)
2 + 𝜆(෍

𝑢

𝑏𝑢
2 +෍

𝑖

𝑏𝑖
2)

Number of Parameters?

● The predicted rating is

● Assuming k dimensions used in decomposing the rating matrix, the number of
unknown parameters in this model are
(n+m)(k+1)

● The Cost function is defined as

● Update Rules

Adding in the user item interaction term

𝑏∗ = argmin
(𝑏𝑖,𝑏𝑢)

෍

(𝑢,𝑖)∈𝒦

(𝑟𝑢𝑖 − 𝜇 − 𝑏𝑖 − 𝑏𝑢 − 𝑝𝑢𝑞𝑖
𝑇)2 + 𝜆(෍

𝑢

𝑏𝑢
2 +෍

𝑖

𝑏𝑖
2 + | 𝑃 |2 + | 𝑄 |2)

ෞ𝑟𝑢𝑖 = 𝜇 + 𝑏𝑖 + 𝑏𝑢 + 𝑝𝑢𝑞𝑖
𝑇

𝑒𝑢𝑖 = 𝑟𝑢𝑖 − ෞ𝑟𝑢𝑖

𝑞𝑖 ← 𝑞𝑖 + 𝛾(𝑒𝑢𝑖 . 𝑝𝑢 − 𝜆. 𝑞𝑖)

𝑝𝑢 ← 𝑝𝑢 + 𝛾(𝑒𝑢𝑖 . 𝑞𝑖 − 𝜆. 𝑝𝑢)

𝑏𝑖 ← 𝑏𝑖 + 𝛾(𝑒𝑢𝑖 − 𝜆. 𝑏𝑖)

𝑏𝑢 ← 𝑏𝑢 + 𝛾(𝑒𝑢𝑖 − 𝜆. 𝑏𝑢)

l is the learning rate (step size) and g is the regularization constant

Reducing the number of Parameters

● Typically the number of users is much larger than the number
of items e.g. Netflix Prize data contained 480,189 users and
17,770 movies with a total of 100,480,507 ratings

● Patarek proposed modelling the user as a linear combination
of item vectors

● Number of parameters for the matrix factorization part is now
O(mk) instead of O(n+m)k

𝑝𝑢 =
1

1 + |𝐼 𝑢 |
෍

𝑖𝑗∈𝐼(𝑢)

𝑦𝑗

Not Missing At Random: The Bias in Rating Data

• Missing at Random means that
the rating of an item has no
bearing on the probability that it
is going to be missing

• The complete Rating matrix is
hidden and some process has
hidden a large proportion of the
ratings

• If the missing ratings are not
missing at random it is important
to understand the process that
caused the rating to be missing

RECOMMENDATION AS SUBSET SELECTION
• While accurately predicting ratings is one way to achieve improved recommendation

• It is more important to get the ranking of items correct

– There is only limited real estate to push recommendations to

– Being accurate in rating a large number of items that are not interesting to the user
does not impact perceived value of the recommender

• An alternative problem statement

– Given a set of n items, and a user ua who has consumed m (<< n) items select N
such that the ratings of these items by a user will be high

• Also referred to as Top-N recommendation

EVALUATION METRICS FOR TOP-N

• Withhold one rating at a time and predict it

– If the test item exists in the recommendation list L(u), it is referred to as a hit and the Top-k hit rate
is defined as

– All hits are equal (no credit given for the rank achieved by the item), Average Reciprocal Hit Rank is
defined as

• Alternatively, a set of items per user are withheld from training and precision and
recall are computed given the recommendations, L(u) of size k, for each user

𝐻𝑅 =
#ℎ𝑖𝑡𝑠

|𝐿 𝑢 |

𝐴𝑅𝐻𝑅 =
1

|𝑈|
෍

𝑢∈𝑈

1

|𝑇 𝑢 |
෍

𝑖𝑗∈𝑇(𝑢)

1

𝑟𝑎𝑛𝑘(𝑖, 𝐿 𝑢)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 =
1

|𝑈|
෍

𝑢∈𝑈

|𝐿(𝑢) ∩ 𝑇(𝑢)|

|𝐿 𝑢 |

𝑟𝑒𝑐𝑎𝑙𝑙@𝑘 =
1

|𝑈|
෍

𝑢∈𝑈

|𝐿(𝑢) ∩ 𝑇(𝑢)|

|𝑇 𝑢 |

Note: k = |L(u)|

෍

𝑢∈𝑈

෍

𝑖∈𝐼

𝑤𝑢𝑖 𝑟𝑢𝑖 − (𝑟𝑚 + 𝑝𝑢𝑞𝑖
𝑇)

2
+ 𝜆 ෍

𝑑

𝑝𝑢𝑑
2 + 𝑞𝑖𝑑

2

Adapting Matrix Factorization to TOP-N Recommendation

• Cost function adapted to account for the fact that most missing values are uninteresting

– Missing rating are imputed (parameter) and set to rm

– A weight (parameter) is assigned to each rating to account for sparsity and the fact that most ratings are
missing

– Cost function defined over all items (not just the observed)

– Hyper-Parameters, rm, wui, and l are set using cross validation to maximize recall@k (Top-k HR)

𝑤𝑢𝑖 = ቊ
1 𝑖𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑟𝑎𝑡𝑖𝑛𝑔
𝑤𝑚 𝑖𝑓 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑛𝑔

Restricted Boltzmann Machine

● Restricted Boltzmann Machine is a stochastic neural network

● One layer of visible units

● Ratings for movies are fed through the visible layer

● |I| x r units

● Netflix winning team used a binary input (rated/not
rated) rather than the actual rating

● One layer of hidden units

● Parameter representing the number of hidden factors

● A bias (always on)

● Each visible unit is connected to all hidden units (undirected edge
– symmetrically weighted connections)

Restricted Boltzmann Machine

● Due to the sparse rating matrix, each user is modelled using a different RBM

● Same number of hidden units

● Visible nodes is equal to the number of movies rated by the user

● One training example per RBM, V, a r x m binary matrix (here m = |I(u)|)

● Weights and biases are tied together (shared across user RBMs)

● Conditional multinomial distribution models each movie rating

● Conditional Bernoulli distribution models a hidden unit

𝑝 𝑣𝑖
𝑘 = 1 ℎ =

exp(𝑏𝑖
𝑘 + σ𝑗=1

𝑘 𝑊𝑖𝑗
𝑘ℎ𝑗)

σ𝑙=1
𝐾 exp(𝑏𝑖

𝑙 + σ𝑗=1
𝐹 𝑊𝑖𝑗

𝑙 ℎ𝑗)

𝑝 ℎ𝑗 = 1 𝑉 = 𝜎 𝑏𝑗 +෍

𝑖=1

𝑚

෍

𝑘=1

𝐾

𝑣𝑖
𝑘𝑊𝑖𝑗

𝑘

Restricted Boltzmann Machine

𝑝 𝑉 =෍

ℎ

exp(−𝐸 𝑉, ℎ)

σ𝑉′,ℎ′ exp(−𝐸 𝑉′, ℎ′)

Image from Edwin Chen, http://blog.echen.me/2011/07/18/introduction-to-restricted-boltzmann-machines/

where 𝐸 𝑉, ℎ = −෍

𝑖=1

𝑚

෍

𝑗=1

𝐹

෍

𝑘=1

𝐾

𝑊𝑖𝑗
𝑘ℎ𝑗𝑣𝑖

𝑘 −෍

𝑖=1

𝑚

෍

𝑘=1

𝐾

𝑣𝑖
𝑘𝑏𝑖

𝑘 −෍

𝑗=1

𝐹

ℎ𝑗𝑏𝑗

Gradient Ascent on log p(V) to learn W

http://blog.echen.me/2011/07/18/introduction-to-restricted-boltzmann-machines/

Contrastive Divergence

• Take a training example, Set the states of the visible units to these

• Next, update the states of the hidden units using the logistic activation rule described above:

• for the jth hidden unit, compute its activation energy

• set hj to 1 with probability σ(aj) and to 0 with probability 1−σ(aj)

• Then for each edge eij, compute Positive(eij)=vi∗hj (i.e., for each pair of units, measure

whether they’re both on)

• Now reconstruct the visible units in a similar manner:

• for each visible unit, compute its activation energy

• set vi to 1 with probability σ(ai) and to 0 with probability 1−σ(ai)

• Then update the hidden units again and compute Negative(eij)= vi∗hj for each edge.

• Update the weight of each edge eij by

• Repeat over all training examples.

𝑎𝑗 = 𝑏𝑗 +෍

𝑖

𝑤𝑖𝑗𝑣𝑖

𝑎𝑖 = 𝑏𝑖 +෍

𝑗

𝑤𝑖𝑗ℎ𝑗

𝑤𝑖𝑗 = 𝑤𝑖𝑗 + 𝜆(𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑒𝑖𝑗 − 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑒𝑖𝑗)

CONTENT BASED FILTERING

• Recommend items that are similar to items previously
consumed by the user

• Similarity measurement can get complex

– Simple approach is to “vectorize” the content

Why is the article of interest to the
consumer?
• Is he a BJP (or Usha Thakur) supporter?
• Is he from Indore?
• Is he a Muslim or Hindu?
• Is he concerned about the rising levels of

communal rhetoric in the country?
…..

Documents
• have different lengths
• contain sequence of words

selected from a vocabulary
• Authored by people with

different writing styles and
vocabularies

• Documents can

be hyperlinked

• Links typically

are not random

Need to convert documents to vectors

• Ideal Representation for

allowing retrieval of

relevant documents for a

user query

• How can I model

documents so that I can

generate new ones that

have similar statistical

properties to those that

humans write

• Symbols are unwieldly

• How can I find numeric

(continuous)

representations for

symbols so I can

manipulate them and

create accurate models

Tfidf, LSA pLSA LDA Maximum Likelihood Word Embedding,

Hidden Markov Models Recursive Neural Nets

Conditional Random Fields

Documents as vectors
• The Vector Space Model

– Each document is represented as a vector of weights

• Weight represents how much the term, tk, contributes to the
semantics of the document

– Each term (typically a word or unigram) in a predefined vocabulary, V, is a dimension of
this space

• Also referred to as Bag of Words
• Ignore ordering of words

– “the poor man ate the food” and “the man ate the poor food” have
the same bag of words representation

• Typical processing of text
– Tokenize (Words) and remove punctuation
– stem words

• Use heuristics to collapse multiple words to the same root e.g.
organize, organizes, and organizing get mapped to organiz

– remove stop words

• Stop words are words that do not typically contribute to the
semantics of the document e.g. a, an, the, and, but…

REPRESENTING ARTICLES AS VECTORS

• Preprocess the article
– Tokenize

– Lemmatize/Stem

– Remove Stop Words

• Derive weights for each token
– Represent importance of token in describing the document

– Each document is now represented as an n-dimensional vector of
weights

– Also known as the Bag of Words representation as we loose token
sequencing information

• The above is a “Syntactic Representation” of a document

Am → be, am
Going → going, go
having → have,hav

𝑡𝑓𝑖𝑑𝑓 𝑤, 𝑑 =
𝑛𝑑(𝑤)

|𝑑|
𝑙𝑛

𝑁

𝑑𝑓(𝑤)

EXAMPLE

• Suppose the following eight texts are in our corpus

– d1:Human Machine interface for ABC computer applications

– d2:A survey of user opinion of computer system response time

– d3:The EPS user interface management system

– d4:System and human system engineering testing of EPS

– d5:Relation of user perceived response time to error measurement

– d6:The generation of random, binary, ordered trees

– d7:The intersection graph of paths in trees

– d8:Graph minors IV: Width of trees and well-quazi-ordering

EXAMPLE: BAG OF WORDS
d1 d2 d3 d4 d5 d6 d7 d8 df

Human 1 0 0 1 0 0 0 0 2

Interface 1 0 1 0 0 0 0 0 2

Computer 1 1 0 0 0 0 0 0 2

User 0 1 1 0 1 0 0 0 3

System 0 1 1 2 0 0 0 0 3

response 0 1 0 0 1 0 0 0 2

Time 0 1 0 0 1 0 0 0 2

EPS 0 0 1 1 0 0 0 0 2

Survey 0 1 0 0 0 0 0 0 1

Trees 0 0 0 0 0 1 1 1 3

Graph 0 0 0 0 0 0 1 1 2

minors 0 0 0 0 0 0 0 1 1

𝑡𝑓𝑖𝑑𝑓 human, 𝑑1 =
1

6
ln

8

2
= 0.23

Feature Extraction: Latent Semantic Analysis
• Assumes some latent semantic space obscured by randomness of word

choice e.g. human vs user
– Lexical level (“what was said”) Vs Semantic level (“what was meant”)
– Method for removing “noise” in the “semantic signal”

• Estimating the hidden concept space (associates syntactically different but semantically
equivalent terms/ documents)

• Given an mxn matrix X consisting of the word frequency counts for m
words in n documents

• A singular value decomposition of X results in three matrices U, S and VT

– The singular values in S provide a basis for reducing the dimensionality of U
and V by choosing the r largest values

– Each row, ui, in U is a representation of a word in r-dimensional space
• Columns (right singular vectors) are the Eigen vectors of XXT

– Each row, vi, in V is a representation of a document in r-dimensional space
• Columns (left singular vectors) are the Eigen vectors of XTX

SVD Example

.22 -.11 .29 -.41 -.11 -.34 .52 -.06 -.41

.2 -.07 .14 -.55 .28 .5 -.07 -.01 -.11

.24 .04 -.16 -.59 -.11 -.25 -.3 .06 .49

.4 .06 -.34 .1 .33 .38 0 0 .01

.64 -.17 .36 .33 -.16 -.21 -.17 .03 .27

.27 .11 -.43 .07 .08 -.17 .28 -.02 -.05

.27 .11 -.43 .07 .08 -.17 .28 -.02 -.05

.30 -.14 .33 .19 .11 .27 .03 -.02 -.17

.21 .27 -.18 -.03 -.54 .08 -.47 -.04 -.58

.01 .49 .23 .03 .59 -.39 -.29 .25 -.23

.04 .62 .22 0 -.07 .11 .16 -.68 .23

.03 .45 .14 -.01 -.3 .28 .34 .68 .18

.2 .61 .46 .54 .28 0 .01 .02 .08

-.06 .17 -.13 -.23 .11 .19 .44 .62 .53

.11 -.5 .21 .57 -.51 .1 .19 .25 .08

-.95 -.03 .04 .27 .15 .02 .02 .01 -.03

.05 -.21 .38 -.21 .33 .39 .35 .15 -.6

-.08 -.26 .72 -.37 .03 -.3 -.21 0 .36

.18 -.43 -.24 .26 .67 -.34 -.15 .25 .04

-.01 .05 .01 -.02 -.06 .45 -.76 .45 -.07

-.06 .24 .02 -.08 -.26 -.62 .02 .52 -.45

3.34

2.54

2.35

1.64

1.5

1.31

.85

.56

.36

U

S

VT

LSA Example (Reconstruction with 2
dimensions)

1 2 3 4 5 6 7 8 9

Human 1 0 0 1 0 0 0 0 0

Interface 1 0 1 0 0 0 0 0 0

Computer 1 1 0 0 0 0 0 0 0

User 0 1 1 0 1 0 0 0 0

System 0 1 1 2 0 0 0 0 0

response 0 1 0 0 1 0 0 0 0

Time 0 1 0 0 1 0 0 0 0

EPS 0 0 1 1 0 0 0 0 0

Survey 0 1 0 0 0 0 0 0 1

Trees 0 0 0 0 0 1 1 1 0

Graph 0 0 0 0 0 0 1 1 1

minors 0 0 0 0 0 0 0 1 1

1 2 3 4 5 6 7 8 9

Human .16 .4 .38 .47 .18 -.05 -.12 -.16 -.09

Interface .14 .37 .33 .4 .16 -.03 -.07 -.1 -.04

Computer .15 .51 .36 .41 .24 .02 .06 .09 .12

User .26 .84 .61 .7 .39 .03 .08 .12 .19

System .45 1.23 1.05 1.27 .56 -.07 -.15 -.21 -.05

response .16 .58 .38 .42 .28 .06 .13 .19 .22

Time .16 .58 .38 .42 .28 .06 .13 .19 .22

EPS .22 .55 .51 .63 .24 -.07 -.14 -.2 .11

Survey .1 .53 .23 .21 .27 .14 .31 .44 .42

Trees -.06 .23 -.14 -.27 .14 .24 .55 .77 .66

Graph -.06 .34 -.15 -.3 .2 .31 .69 .98 .85

minors -.04 .25 -.1 -.21 .15 .22 .5 .71 .62

The matrix resulting from the reduced number of dimensions is the optimal

approximation (with respect to least squares error) of the original matrix X

WordSimilarity

.22 -.11 .29 -.41 -.11 -.34 .52 -.06 -.41

.2 -.07 .14 -.55 .28 .5 -.07 -.01 -.11

.24 .04 -.16 -.59 -.11 -.25 -.3 .06 .49

.4 .06 -.34 .1 .33 .38 0 0 .01

.64 -.17 .36 .33 -.16 -.21 -.17 .03 .27

.27 .11 -.43 .07 .08 -.17 .28 -.02 -.05

.27 .11 -.43 .07 .08 -.17 .28 -.02 -.05

.30 -.14 .33 .19 .11 .27 .03 -.02 -.17

.21 .27 -.18 -.03 -.54 .08 -.47 -.04 -.58

.01 .49 .23 .03 .59 -.39 -.29 .25 -.23

.04 .62 .22 0 -.07 .11 .16 -.68 .23

.03 .45 .14 -.01 -.3 .28 .34 .68 .18

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8

U

Document Similarity

.2 .61 .46 .54 .28 0 .01 .02 .08

-.06 .17 -.13 -.23 .11 .19 .44 .62 .53

.11 -.5 .21 .57 -.51 .1 .19 .25 .08

-.95 -.03 .04 .27 .15 .02 .02 .01 -.03

.05 -.21 .38 -.21 .33 .39 .35 .15 -.6

-.08 -.26 .72 -.37 .03 -.3 -.21 0 .36

.18 -.43 -.24 .26 .67 -.34 -.15 .25 .04

-.01 .05 .01 -.02 -.06 .45 -.76 .45 -.07

-.06 .24 .02 -.08 -.26 -.62 .02 .52 -.45

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8

VT

Probabilistic Models of Documents

• Generative Model
– Assume that the corpus has been generated from a mixture model parameterized

by 
– A mixture model is a probability distribution defined by a linear combination of

individual probability distributions (known as components) Cj
• Each Cj is parameterized by j  

– Generally assume a one-to-one correspondence between components and classes
of documents

• Two models for computing P(di|Cj;) (assuming conditional independence of
words given a class)
– Multi-variate Bernoulli Model
– Multinomial Distribution Model

𝑝 𝑑𝑖 𝜃 =෍

𝑗=1

𝑘

𝑝(𝑑𝑖 𝐶𝑗 𝑝(𝐶𝑗)

Bernoulli Distribution
• Bernoulli Trail is an experiment whose outcome is

– Random

– Binary (success or failure)

• A Bernoulli process consists of repeatedly performing
independent and identical (i.i.d) Bernoulli trails

• Bernoulli Distribution is a Discrete Probability Distribution

– Takes a value of 1 (success) with probability  and a value 0 (failure)
with probability 1- 

– Probability mass function defined as

Multivariate Bernoulli Document Model

• Documents in D are described by vocabulary, V

• Each document, di, is defined by a binary vector of dimensionality |V|
– Dimension t of the vector di, dit, is set to 0 if the word, wt V, does not appear in

the document else it is set to 1
– P(di|cj;) can then be calculated as

– P(wt|cj;) is estimated from the data as

– Prior Probabilities, P(cj;) are estimated as

𝑝 𝑑𝑖 𝐶𝑗 =ෑ

𝑡=1

|𝑉|

𝑝(𝑤𝑡|𝐶𝑗; 𝜃)
𝑑𝑖𝑡 1 − 𝑝(𝑤𝑡|𝐶𝑗; 𝜃)

(1−𝑑𝑖𝑡)

𝑝 𝐶𝑗 𝜃 =
σ
𝑖=1
|𝐷|

𝑝(𝐶𝑗|𝑑𝑖)

|𝐷|

𝑝 𝑤𝑡 𝐶𝑗; 𝜃 =
1 + σ𝑖=1

|𝐷|
𝑑𝑖𝑡𝑝(𝐶𝑗|𝑑𝑖)

2 + σ
𝑖=1
|𝐷|

𝑝(𝐶𝑗|𝑑𝑖)

Multinomial Distribution

• Generalization of the binomial distribution
– Probability distribution of the number of successes in ‘n’ i.i.d Bernoulli

trials

• Each trial results in one of k outcomes with probabilities
p1,p2,…,pk

• Given n trials the probability distribution followed by the
random variable X=(X1,X2,…Xk), where Xi is the number of
times that the i-th outcome is observed is defined as

𝑝 𝑟; 𝑛, 𝑝 =
𝑛!

𝑟! 𝑛 − 𝑟 !
𝑝𝑟(1 − 𝑝)1−𝑟

𝑝(𝑥1, 𝑥2…. 𝑥𝑛; 𝑛, 𝑝1, 𝑝2…… 𝑝𝑛) = 𝑛!ς𝑖=1
𝑘 𝑝

𝑖

𝑥𝑖

𝑥𝑖!

Multinomial Document Model
• Captures word frequency

• A document, di, is represented as a sequence of word events
– P(di|cj;) can then be calculated as

• Note, the equation assumes that document length is independent of the
class, though this is not necessary

– P(wt|cj;) is estimated from the data as

• Laplace Smoothing (a special case of Lidsone smoothing, l=1) is applied in
this estimation

𝑝 𝑑𝑖 𝑐𝑗; 𝜃 = 𝑝 𝑑𝑖 𝑑𝑖 !ෑ

𝑡=1

|𝑉|
𝑝(𝑤𝑡|𝑐𝑡; 𝜃)

𝑁𝑖𝑡

𝑁𝑖𝑡!

𝑝 𝑤𝑡 𝐶𝑗; 𝜃 =
1 + σ𝑖=1

|𝐷|
𝑁𝑖𝑡𝑝(𝐶𝑗|𝑑𝑖)

𝑉 + σ
𝑡=1
|𝑉| σ

𝑖=1
|𝐷|

𝑁𝑖𝑡𝑝(𝐶𝑗|𝑑𝑖)

TOPIC MODELS

• A language has a vocabulary
• Words from the vocabulary are chosen to form a document, d, of length |d|

– Words are chosen by the author. Different authors would write the same article
differently.

• The words in a document reflect a mix of unobserved topics
• Each topic defines a probability distribution over the words in the vocabulary

– The word “cricket” is more likely to appear in an document about sports than in a
document about cooking

– D1: <bat: 0.3,drive:0.1,umpire:0.05,tendulkar:0.2,lawyer:0.4>
and D2: <kohli:0.3,australia:0.2,warner:0.3,accused:0.2,sue:0.1> may have a similar
Topic representation with a high Topic weight for topic 1 below, for example
<t1:0.8,t4:0.2>

Latent Dirichlet Allocation

• Probabilistic model of a corpus that
– Assigns high probability to members of the corpus; and

– Assigns high probability to other “similar” documents

• Uses one parameter more than the mixture of unigrams
– a is k-dimensional as opposed to the k-1 prior probabilities of

the classes

• Documents are represented as mixtures over latent topics

The generative process

• Length of the document: How many words?

• What is the document about?

– Topic Distribution (t1,t2,….tk) such that

• What are the words?

– Drawn from, P(V|t), where V is the
vocbulary

• a multinomial distribution of words for
each topic

• Note

– No consideration to Grammar

– Positions of words in the document
irrelevant

T1: 0.6 T2: 0.3 T7:0.1

kohli court over

wicket pitch

anger

bowler lawyer

assault

tea

pavilion

teammates case

testimony

Length: 14 words

෍

𝑡=1

𝑘

𝑡𝑘 = 1

A tangential question:
How many Martians will buy milk?

• What is the probability of finding a
transaction that contains milk, p?

– p itself is a random variable

– So what is the distribution of p?

• What is our prior belief in its value?

• Beta Distribution

• Two shape parameters a,b

• Note that x [0,1]

• Intuitively, a and b are the ‘imaginary’

counts of the two outcomes that lead

to our prior belief in x

Given some Data, D containing a
milk purchases our of n..

𝑓 𝑥; 𝛼, 𝛽 =
Γ 𝛼 + 𝛽

Γ 𝛼 Γ 𝛽
𝑥𝛼−1(1 − 𝑥)𝛽−1

𝑝 𝑚𝑖𝑙𝑘|𝐷 =
𝑎 + 𝛼

𝑛 + 𝛼 + 𝛽

Generating the topic vector for a document

• To generate a documents we need a way to generate k-
tuples

– Each element represents the proportion of words
generated from a particular topic

• The Dirichlet Distribution

– Generalization of the beta distribution

– Parameterised by k-vector, a

LDA: Generative Model

• Choose N (length of the document) using a Poisson Distribution

• Choose  using a k dimensional Dirichlet Distribution (a)
– k is the number of topics
–  is the gamma function

• Choose each of the N words, wn, in the document by
– Choosing a topic zn using the multinomial distribution define by the

parameters 
– Choose a word wn from the multinomial distribution p(wn|zn,b)

• b is a k|V| matrix where the i-th row consists of the probability values for
selecting each word given zi

𝑓 𝑁; 𝜆 =
𝜆𝑁𝑒−𝜆

𝑁!

𝑝 𝜃 𝛼 =
Γ σ𝑖=1

𝑘 𝛼𝑖

ς𝑖=1
𝑘 Γ(𝛼𝑖)

𝜃1
𝛼1−1 𝜃2

𝛼2−1… 𝜃𝑘
𝛼𝑘−1

LATENT VARIABLES, TOPIC MODEL AND SEMANTIC
REPRESENTATIONS

• A language has a vocabulary
• Words from the vocabulary are chosen to form a document, d, of length |d|

– Words are chosen by the author. Different authors would write the same article
differently.

• The words in a document reflect a mix of unobserved (latent) topics
• Each topic defines a probability distribution over the words in the vocabulary

Government Unions Agricultural Pricing Cricket Weather

सरकार 0.012 सरकार 0.01 टीम 0.022 मौसम 0.011

कममचाररय ों 0.009 गेहों 0.009 मैच 0.011 आोंधी 0.009

प्रदर्मन 0.008 रुपये 0.008 क्रिकेट 0.01 गमी 0.009

माोंग 0.008 क टम 0.007 खेल 0.008 बाररर् 0.009

अध्यक्ष 0.008 क्रकसान ों 0.007 क्रिकेट 0.007 तूफान 0.009

धरना 0.007 कें द्र 0.007 खखलाफ 0.005 तेज 0.008

आोंद लन 0.06 खरीद 0.006 मुकाबले 0.004 रात 0.007

 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

D0 0 0 0 0.19 0.16 0.36 0 0 0.28 0 0

D1 0.07 0.19 0.34 0.38 0 0 0 0 0 0 0

D2 0.21 0.1 0 0 0 0.68 0 0 0 0 0

CONTENT BASED FILTERING

Person

Organization

Location

Community

Job

Event

Extracted Entities & Tags:
Usha Thakur
Navratr
Muslim
BJP
Bakr Id
Durga Puja
Madhya Pradesh
Indore
Controversial Communal Rhetoric

CONTENT SIMILARITY

– Given a news story (di) with

• tfidf vector ti

• Topic vector Ti

• Feature Vector fi

• Similarity between two news stories can be computed as

Example:
D1: The situation in Sirsa is tense as the army was called in to maintain
law and order.

D2: The curfew imposed by the armed forces stopped the violent clashes in Boston.

t1:<{army:0.69}, {called:0.48},{law:0.72}{maintain:0.51},{order:0.64},{situation:0.55},{Sirsa:0.77}{tense:0.64}>
T1:<Law and Order: 0.8, Haryana:0.2>
f1:<location:sirsa:1>

t2:<{armed:0.69},{clash:0.6},{curfew:0.77},{force:0.62},{impose:0.69},{stop:0.49},{violent:0.66},{Boston:0.77}>
T2:<Law and Order: 0.8, USA:0.2>
f2:<location:Boston:1>

𝑠𝑖𝑚 𝑑1, 𝑑2 = 𝛼𝑠𝑖𝑚 𝑡1, 𝑡2 + 𝛽𝑠𝑖𝑚 𝑇1, 𝑇2 + 1 − 𝛼 − 𝛽 𝑠𝑖𝑚(𝑓1, 𝑓2)

CONTENT SIMILARITY

• Standard approach to computing similarity between vectors is cosine similarity

• sim(t1, t2) = 0

• sim(T1,T2) =

• sim(f1,f2) = 0

• If a = 0.3 and b = 0.3 then sim(D1,D2) = 0.105

𝑐𝑜𝑠𝜃 =
𝑣𝑎. 𝑣𝑏
𝑣𝑎 𝑣𝑏

0.8 × 0.8

0.64 + 0.04 0.64 + 0.04
= 0.35

Locality Sensitive Hashing

• Finding similar documents is required in a number of applications

• Content based filtering

• Nearest Neighbour based classification (authorship attribution)

• Plagiarism detection

• Finding similar documents is O(n)

• Solution

• Hash documents into buckets based on their similarity

• To find the nearest neighbours of the new document

• Assign a new document to a bucket

• Search only those documents that are in the same bucket as new documents

• Quality of hashing defined by

• Number of false positives (number of non-neighbours that end up in the same
bucket as the new document)

• Number of false negatives (number of neighbours that end up in a different
bucket)

Hashing documents

• Creating a hash function (of k bits)

• Generate Random hyperplanes that cut the instance

space into two

• Assign a bit 1 to one side of each hyperplane and 0 to the

other

• Note that some “neighbours” are in a different bucket so

will not be retrieved

• Solution

• Creating multiple hash functions

• For the target document, find all buckets it belongs to and

take the union of these buckets, B=UBi

• Search of neighbours in the union of all buckets, B

h1

h2

h3

101111

001

How likely are we to miss neighbours?

• Computational Cost

• Assuming a d-dimensional vector, O(kd)

• Nearest neighbour search in a bucket

• Average number of documents in each bucket is n/2k

• Hence O(dn/2k)

• Assuming L buckets

• O(kd + dn/2k)L = O(logN) if k  log N

• Probability to a false Negative (Neighbour that does not get hashed

within the same bucket as the target document)

ෑ

𝑖=1

𝐿

𝑝 ℎ𝑖 𝑎 ≠ ℎ𝑖 𝑏 = 𝑝 ℎ𝑖 𝑎 ≠ ℎ𝑖 𝑏
𝐿

= (1 − 𝑝𝐾)𝐿 = (1 − 1 −
2𝜃

𝜋

𝐾
)𝐿

Probability that a bit is the same
θ = arccos 𝑎𝑇𝑏

Evaluation

0

1000

2000

3000

4000

5000

6000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
u

m
b

er
 o

f
D

o
cu

m
en

ts

Similarity Threshold

Number of documents with neighbours

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
ec

al
l

Neighbour Similarity Threshold

Recall for 15, 7 bit hashes

• Data consists of 4830 news articles

• Evaluation Metric: Recall based on

neighbour similarity threshold

• 15 hash functions, each consisting of 7

planes used to partition the space of

documents (128 buckets)

• Average number of documents compared:

580 (app. 12%)

• For thresholds >= 0.6, recall > 0.9 can be

achieved

Evaluation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

575 940 1074 1877 1773 1694

R
ec

al
l

Number of Documents compared

Neighbours using Similarity Threshold 0.5

• Recall of 0.9 can be achieved with lower thresholds of neighbour

similarity using fewer buckets and hash functions

• Results in a larger number of documents to be compared (app. 30% of documents to

achieve 0.9 recall when neighbours are defined as those with similarity > 0.5

REPRESENTING CONTENT AS A GRAPH

CREATING A USER PROFILE

• Represent the user in the same vector space as items

• Rocchio’s algorithm

– Borrowed from information retrieval literature on relevance feedback

– Variants assign more weight recent articles

𝑢𝑎 = ෍

𝑖𝑗∈𝐼𝑎

𝑟𝑢𝑗𝑖𝑗

CONTENT BASED FILTERING

• Pros

– New Items can be recommended immediately to the existing customer base

– No data needed other than item descriptions

– Does not depend on how “run of the mill” a user is

• Cons

– Typically results in narrow focus (No “widening the horizons” of the user)

BACK TO NEWS RECOMMENDATION

News
Stories

Features
Reader
Profile

Match Recommend

Generalize
(Collaboratively)

f1i, f2i, f3i,…, fni

f1j, f2j, f3j,…, fnj

f1k, f2k, f3k,…, fnk

g1l,g2l, g3l,…, gnl

g’1l,g’2l, g’3l,…, g’nl

Recommending: A continuum

• Note these are individual weights, specific to the user
– w2 is based on the strength of the signal from the target user
– w1 is based on the signal strength from the neighbourhood and how

the user has responded to recommendations from his neighbourhood

+(1- w1)w1 xw2 x +(1- w2) x

 When should we begin personalization?

 Content Based: Too specific too soon

 Collaborative: Poor Neighbourhood Identification

Graph based recommender systems

• Who can use them?
– Pinterest or any similar platform based out of the concept set of

items related to set of classes.
– Graph based recommendation systems serve as skeleton for this

purpose

• What sort of graphs are we looking at?
– A network in which every node is connected to every other node is

Fully connected graph.
– If some set of nodes in a graph can be divided into two sets such

that nodes in one set are connected to the other set alone. These
graphs are Bipartite graphs

ABOUT PINTEREST

• Pinterest is a social bookmarking site

• It is a social network that allows users to
share, curate, discover new interests by
“pinning” images to their user wall

• It allows users to explore, discover and
curate and share content (images) based
on their lifestyle and interests

• It also provides links to sites where
consumers can buy products or learn more
about them

• Pinterest is currently valued at $12.3
Billion

73

PIXIE, PINTEREST’S RECOMMENDATION
SYSTEM

With a total user base of 250+ million, Pinterest has
been constantly scaling the number of pins saved and
matching them to people with overlapping interests,
serving more than 10 billion recommendations every
day.

74

WHAT IS PIXIE ?

• Pixie is a flexible, graph-based system for making personalized
recommendations in real-time

• The goal is to create a system that could provide relevant and narrow
recommendations at sub-second response rates as Pinners scroll
through the home feed

• As Pinterest’s main recommender system, Pixie is applied across all
product surfaces

• Pixie powers recommendations across Pinterest in Related Pins, Home
feed and Explore, and accounts for about half of all Pins saved.

75

HOW DOES IT WORK ?

• Starting from a bipartite graph where each edge shows that a person saved a Pin
to a board.

• This graph captures a huge amount of rich data from users (Pinner) with more
than 100 billion edges and several billion nodes.

• Developed advanced machine-learning systems like Pinnability that predict how
relevant an idea is to a Pinner, the first challenge is figuring out which of the
more than 100 billion Pins to even consider since we can’t possibly score them all
at once.

• Pixie solves the candidate generation problem by starting graph traversal from a
set of nodes that are already know to be currently relevant to the Pinner. Then, it
only examines the portion of the graph nearest to these nodes by using a biased
random walk algorithm to estimate the Personalized PageRank. The walk starts
from multiple Pins and finds recommendations at the intersection of all of them.

76

THE CHALLENGE

• The data set of pinterest is unique as it’s created from how
people describe and organize Pins and boards, and it results
in countless Pins that have been added hundreds of
thousands of times.

• From this dataset, we know two valuable things: how those
Pins are organized based on the context people add as they
save and the Pinner’s interests.

• With more than 175 billion Pins in the system, they are
dealing with a huge bipartite graph.

The challenge of the recommendation problem was figuring out
how to narrow down the best Pin for the best person at the best
time.

• This is where the graph-based recommender system comes in: we know a set of
nodes that are already interesting to a Pinner, so we start graph traversal from
there.

• Pixie then finds the Pins most relevant to the user by applying a random walk
algorithm for 100,000 steps. At each step, it selects a random neighbor and visits
the node, incrementing node visit counts as it visits more random neighbors. We
also have a probability Alpha, set at 0.5, to restart at node Q so our walks do not
stray too far.

• The nodes that have been visited 14 and 16 times are the ones that are most
closely related to the query node.

• Once the random walks are complete, we know the nodes which have been
visited most frequently are the ones most closely related to the query node.

• Pixie continuously repeats this process in real-time as the data grows, so the
users are always able to keep narrowing down their searches and find the exact
ideas they’re looking for to pursue their goal.

• Instead of just one starting point, Pixie also operates with multiple starting nodes
where different weights are assigned based on the different actions a user can
take on a Pin, whether it’s zooming in, saving the Pin, or something else.

THE SOLUTION

78

Bipartite graphs

Traversals and the theory

• How do this graphs are generated?
– Users upload pins and they pin them onto boards.
– Over a period of time, curation by humans generates this graph

and this will help us in associations.

• How are recommendations generated?
– Traversals by Random walk

• Can we do any better?
– Biased random walks based on probabilistic selection

Traversals and its theory

• Bias in graphs
– Traversing to more related boards
– Connections between board to pin is based upon relatedness

and simple relatedness metric like

p(board(k)/pin(j)) = n(pin(j) ->board(k))/ n(pin(j))

• By above, the most likely board you will traverse to from

a pin is the one that users had most associated the pin

with

• The same goes for the selection of pins from a board.

p(pin(j)|board(k)) = n(board(k) -> pin(j))/n(board(k))

Biased Random walk

• Each step we take from each node is sampled from a discrete
distribution

• Generating recommendations with multiple parallel walks

• How do you deal with multiple repeated recommendations
over all paths?
– Objects are scored based on the number of times they repeat across

a set of paths
– If two different source paths produce same object, this item should

be rated higher

Biased Random walk - Scoring

• score(pin(k)) = (Σ sqrt(visitCount(walk(i))))**2

• Let say we are having three parallel walks and a
node has been visited one time in every single
path. By the formula above, we give a score of 9 to
this pin.

• Similarly a pin that is visited two times in one path
and single time on second path will have a score of
5.82

Traversals and its theory

• A walk based on previous metrics will produce a fair
set of recommendations

• How can we improve them?
– What about freshness of an object in the pool?
– How can we generate items related to user?
– Can we include ideas from collaborative filtering into this?

Pin freshness and what is it

• It is a scalar value indicating how old the pin is

• An example scaling giving recent pins more
weight can be like

Profiles and its role

• To generate user related content, profile generation is key

• Since a user is defined by what he sees, likes, repins and
searches for, we primarily focus on calculating profiles for
pins themselves

• How can we do pin profiling?
– Title and tags given by the user, if any
– Content of the pin
– Object recognition on Images to auto generate tags

Generating profiles

• From text content
– Using vectorization models to generate low dimensional

representation like Topic Models, Word2Vec, GloVe etc.

• Since a board is a set of pins associated with them. A board
profile can be a
– Average of all profiles of pins pinned on it
– Weighted average of pins with weights being the number of times

each pin got pinned to a board

User profiles as a driver

• We use user profiles to drive recommendations

• How do we do that?
– We select source node profile and use user profile to transform the board profiles

to user bias
pin_board_probability_array *

(self.user_profile.dot(self.board_profiles.T))

– We use the normalised form of this to select the best board.

– We use a similar transformation to jump from a board to pin

_board_pin_probability_array *

(self.user_profile.dot(self.pin_profiles.T)) * self.pin_freshness

Pinterest’s Pixie - Algorithm

Multiple user profiles for better
recommendations

• Most users tend to have a permanent
and temporary tastes and it is quite hard
to catch both of them in one profile.

• We use temporary and permanent
profiles to generate recommendations.

• Temporary and permanent profiles have
a different decay rate when calculating
profiles.

Scaling recommender systems

• How scalable is the system?
– Pinterest uses 120GB of RAM to load their board-pin

graphs.
– Dealing with Sparse matrices for traversals.

• If the connectivity is weak in the network, use sparse matrices to
generate them.

• It can use DOK, CSC or CSR (Compressed Sparse Column/Row
matrices).

• A low memory footprint arrays can be made with above data
structures

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.html#scipy.sparse.dok_matrix
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.html#scipy.sparse.csc_matrix
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix

Scaling recommender systems

• Where will they be lacking?
– Slicing rows and columns
– Each matrix form comes with pros and cons.

• While CSR matrix has faster row splicing, column splicing is
incredibly slow.

• While CSC matrix has faster column splicing, row splicing is
incredibly slow.

• Since we need to switch between boards to pins and vice versa,
we use both matrices in switching to find appropriate rows and
columns.

Faster recommendations + cache ...

• While arrays can only do so much, pre-caching to serve
recommendations can tremendously increase user
experience on the platform

• Pre-calculating the recommendations for active users
can act as load distributor for your system.

EVALUATION OF THE RECOMMENDER SYSTEM

• No time stamp associated with ratings
– Hide some ratings from the user item matrix

– Build model on remaining data

– Predict ratings for hidden the hidden ratings

– Compute accuracy metrics

• With time stamp

Time (t)

Training Data ValidationData Test Data

FEATURE EXTRACTION
FASHION RECOMMENDATION

• Customer Registration data

– Preferences: Colours, Brands…

– Qualitative measures: “what looks good on me?” or fashion confidence

– Physical characteristics

– Budgetary Guidelines

– Demographics

• Purchasing behavior

– What product did they buy and when?

• Product Features

– Price

– Colour

– Brand

• Item View data

– What did they view and when?

FEATURE ENGINEERING
Are all items equally important?

Staple Ephemeral

Seasonal

Follower

Fashionista

Price Sensitive

Eclectic

Convolutional Nets and Transfer Learning

Source: https://www.mathworks.com/videos/introduction-to-deep-learning-what-are-
convolutional-neural-networks--1489512765771.html

Learning to Tag Images

• Fit: Loose, Soft A-line,…..
• Style: Slip Dress, Fit and Flare,…
• Neckline: V-neck, Crew, Scoop, Cowl draped neck
• Sleeve Style: Spaghetti straps, Balloon, Angel/Waterfall…
• Sleeve Length: Sleeveless, Short Sleeves, ¾ sleeves,…
• Dress Length: Mid Thigh, On the knee, Just above the knee
• (Predominant) Color: Black, Navy, Primrose Yellow, Diva Blue, …
• Pattern: Plain, Florals, Marl, Paisley….

PERSONALIZED RECOMMENDATION

MODELLING ITEM DEPENDENCIES
ADAPTIVE LEARNING

• Objective

– To provide individualized pathways through content on
a course that builds proficiency is a particular skill
• Improved learning
• Speed of learning/certification

– Given the current state of the student, what content
should he consume next?

• Challenge

– Content to be consumed may requires prerequisite
knowledge
• Dependencies between items
• Dependencies between skill proficiency and items

THE BBN FOR NAÏVE BAYES

Y

x1 x2 x3 xn-1 xn

……
Y Y

X1 0.7 0.1
X1 0.3 0.9

p(Y) = 0.8

Number of Parameters: 2n+1 instead of 2n+1-1

BAYESIAN BELIEF NETWORKS

• Given
– a problem domain described using a set of n random variables V = {X1, X2, …, Xn}

– a joint probability distribution P defined on V

– a DAG G = áV,Eñ

• A Bayesian Network

– Is a directed acyclic graph

• Each variable corresponds to a node in the graph
• Parents of a node Xi are a subset of the variables with a direct influence on the node

– Represents a full joint probability distribution over these variables by defining
• Local conditional probability distributions P(Xi|Parents(Xi))

– Called the conditional probability table

• Assertions of conditional independence

• By the Chain Rule

• Given a BBN

CONVERSATIONAL RECOMMENDATION

• Collaborative Filtering and content based filtering fail for users that have not consumed any
item

• Conversational Recommenders aim to ask “searching questions” that can help recommend
items in the absence of any prior knowledge

• Pros

– More Human Like

– Explicit preference elicitation

– Very useful in complex product sales

• Cons

– Takes time/multiple steps to get recommendations

– In principle, the recommender should be able to learn over time as to which questions allow itto
quickly reach a good recommendation in the current context

CONVERSATIONAL RECOMMENDATION

PREFERENCE ELICITATION

CONTEXTUAL RECOMMENDATION

• Context for user within which (s)he consumed the item

Group Recommendation

● Recommenders are typically built to cater to the preference of
a single user

● How can we recommend items to groups

● For example
● a group of friends that want to watch a movie together
● a meal for a family
● music to be played in a car

● Effect of others

● Emotional Contagion: Others enjoying impact on our experience

● Conformity

● Normative influence

● Informational influence

Approaches to Group Recommendation

● Profile Aggregation

● Is averaging ratings a good idea?

● Drawbacks
● Individual preferences are lost

● The aggregated profile is for a ‘user’ that is not in the group

● Recommendation Aggregation
● Create a ranked list of recommendation for each user in the

group

● Aggregate the lists using a voting mechanism
● Arrows’ theorem: there is no fair voting system

𝑓: 𝑈 × 𝐼 × 𝜑 𝑈 → [1, 𝑟]

Arrow’s Theorem

● No rank-order voting system can be designed that

satisfies these three fairness criteria:

● If every voter prefers alternative X over alternative Y, then

the group prefers X over Y

● If every voter's preference between X and Y remains

unchanged when Z is added to the slate, then the group's

preference between X and Y will also remain unchanged

● There is no dictator: no single voter possesses the power to

always determine the group's preference.

● Kemeny-Optimal aggregation [Dwork et al., 2001]

● Given a distance function between two ranked lists (Kendall

tau distance)

● Given some input ranked lists to aggregate

● Compute the ranked list (permutation) that minimize the

average distance to the input lists

Group Recommendation

Kemeny Optimal Aggregation

● Kemeny optimal aggregation is expensive to compute (NP hard – even with
4 input lists)

● There are other methods that have been proved to approximate the
Kemeny-optimal solution

● Borda count – no more than 5 times the Kemeny distance

● Spearman footrule distance – no more than 2 times the Kemeny
distance [Coppersmith et al., 2006]

● Average – average the predicted ratings and sort

● Least misery - sort by the min of the predicted ratings

RECOMMENDATION DIVERSITY

• One of the goals of recommenders is to provide idiosyncratic items

– The more diverse the recommendations, the more opportunities there are to
recommend such items

– Balance accuracy with diversity
• Individual Diversity: Measured by average dissimilarity between pairs of

recommended items
• Aggregate Diversity: Diversity of recommendations across users

– Unpersonalized recommendations for example, “Top Searches” perform poorly
and more long tail products get recommended

CONCLUDING NOTE

• Focus on rating accuracy may not be the best approach

• Diversity of Recommendations key for gaining “signal”

• Innovative Feature Extraction can improve quality of recommendation

• Item dependencies need to be understood and modelled

• Contextual Recommendation

– Beyond location/Time of Day

• Personalization of Lists of Items or Groups of Users

– Recommending a menu for a dinner

• Add to the mix – Constraints: “Ensure a balanced diet for the
dinner”

– Recommending a play list of a journey

• Conversational Recommenders

– Tweaks and Critiques

Bibliography

• RESNICK, P., IACOVOU, N., SUCHAK, M., BERGSTROM, P., AND RIEDL, J. 1994. GroupLens: An open architecture for collaborative filtering of
netnews. In Proceedings of CSCW.

• KONSTAN, J., MILLER, B., MALTZ, D., HERLOCKER, J., GORDON, L., AND RIEDL, J. 1997. GroupLens: Applying collaborative filtering to
Usenet news. Commun. ACM 40, 3, 77–87.

• D.W. Oard and J. Kim, “Implicit Feedback for Recommender Systems”, Proc. 5th DELOS Workshop on Filtering and Collaborative Filtering,
pp. 31–36, 1998.

• A. Paterek, “Improving Regularized Singular Value Decomposition for Collaborative Filtering”, Proc. KDD Cup and Workshop, 2007.
• R. Salakhutdinov, A. Mnih and G. Hinton, “Restricted Boltzmann Machines for Collaborative Filtering”, Proc. 24th Annual International

Conference on Machine Learning, pp. 791–798, 2007
• Geffory Hinton, “A Practical Guide to Training Restricted Boltzmann Machines”, https://www.cs.toronto.edu/~hinton/absps/guideTR.pdf
• Ben Marlin and Richard Zemel. "Collaborative prediction and ranking with non-random missing data.“ Recsys-2009: ACM Conference on

Recommender Systems
• Yehuda Koren and Robert Bell and Chris Volinsky. MATRIX FACTORIZATION TECHNIQUES FOR RECOMMENDER SYSTEMS. IEEE Computer,

2009
• Koren, Yehuda. (2008). Factorization meets the neighborhood: A multifaceted collaborative filtering model. Proceeding of the 14th ACM

SIGKDD international conference on Knowledge discovery and data mining (KDD’08)
• Mukund Deshpande and George Karypis. Item-Based Top-N Recommendation Algorithms, ACM Transactions on Information Systems, Vol.

22, No. 1, January 2004, Pages 143–177
• Eksombatchai et al., Pixie: a system for recommending 3+ billion items to 200+ million users in real-time WWW’18
• Y. Hu, Y. Koren, C. Volinsky. Collaborative Filtering for Implicit Feedback Datasets

Thanks!
Any questions?

You can find me at:

ssanand@tatrasdata.com

117

