The Past and the dubious: Concept Drift

Snehith allamraju
Typical ML workflow

DATA → TRAINING → ALGORITHM → EVALUATION → MODEL → PREDICTION

DATA → TESTING → ALGORITHM → EVALUATION → MODEL → PRODUCTION

DATA → TESTING → ALGORITHM → EVALUATION → MODEL → PREDICTION

DATA → TESTING → ALGORITHM → EVALUATION → MODEL → PRODUCTION

DATA → TESTING → ALGORITHM → EVALUATION → MODEL → PREDICTION

DATA → TESTING → ALGORITHM → EVALUATION → MODEL → PRODUCTION
Static model

Model does not change

Process changes

source: Evonik Industries
Types of drift in Machine Learning

- **Concept Drift**
 - Statistical properties of Target variable change
 - Hidden Context: A dependency not given explicitly in the form of input features.

- **Data Drift**
 - Statistical properties of the input data change
 - Seasonality, trend etc
 - No impact to previously labeled data

- **Upstream/pipeline changes**
 - Operational changes in data pipeline
 - Change in encoding, null value handling etc
The Past and the Dubious : Concept Drift

- Renders the model built on data, inconsistent with new data
- Differing decision boundary for the same input data over time

Examples
- Weather Prediction based on historical events
- Buying behavior based on customer preferences
- Fraud prediction based on payments
Types of concept drift

- **Abrupt Change in Class Distribution**: Class Distribution modified at a slower rate.
- **Drifts reoccur with time. Can be cyclic**.
What can we do / must be done

- **Monitor the distribution of the incoming data**: Small distribution changes may require an update to the model on more recent data, while large deviations may require a full re-training of the model.

- **Regular model refresh necessary**: Use SME to review model outputs periodically, and to determine new labels/data points that can be used to update the model.

- **Assume** that concept drift would occur, and periodically update.

- **Adapt to concept drift**, with limited resources (time and memory).

https://www.dataversity.net/handling-concept-drift-in-interventional-machine-learning-systems/
Handling Concept Drift

Three Basic approaches

- **Instance Selection**
- Instance Weighting
- Ensemble learning

Consists in generalizing from a window that moves over recently arrived instances and uses the learnt concepts for prediction only in the immediate future.

The window size can be fixed or heuristically determined (Adaptive)

The Problem of Concept Drift: Definitions and Related Work - Alexev Tsymbalo paper. (April 29, 2004)
Concept drift with Python - learning from evolving data streams

Drift Detection: `skmultiflow.drift_detection`

The `skmultiflow.drift_detection` module includes methods for Concept Drift Detection.

- `drift_detection.ADWIN`: Adaptive Windowing method for concept drift detection.
- `drift_detection.DDM`: Drift Detection Method.
- `drift_detection.EDDM`: Early Drift Detection Method.
ADWIN (ADaptive WINdowing)

- ADWIN efficiently keeps a variable-length window of recent items.
- Window has the maximal length statistically consistent with the hypothesis *there has been no change in the average value inside the window*.
- This window is further divided into two sub-windows (W0, W1) used to determine if a change has happened.
- ADWIN compares the average between W0 and W1 to confirm that they correspond to the same distribution.
- Concept drift is detected if the distribution equality no longer holds.
- Upon detecting a drift, W0 is replaced by W1 and a new W1 is initialized.
- ADWIN uses a confidence value $\delta = \in (0, 1)$ to determine if the two sub-windows correspond to the same distribution.
In [1]:
>>> # Imports
>>> import numpy as np
>>> from skmultiflow.drift_detection.adwin import ADWIN
>>> adwin = ADWIN()

Simulating a data stream as a normal distribution of 1's and 0's
>>> data_stream = np.random.randint(2, size=2000)

Changing the data concept from index 999 to 2000
>>> for i in range(999, 2000):
 data_stream[i] = np.random.randint(4, high=80)
 #print(data_stream[i])
 #if adwin.detected_change():
 #print('Change detected in data: ' + str(data_stream[i]) + ' - at index: ' + str(i))

Adding stream elements to ADWIN and verifying if drift occurred
>>> for i in range(2000):
 adwin.add_element(data_stream[i])
 print(data_stream[i])
 if adwin.detected_change():
 print('Change detected in data: ' + str(data_stream[i]) + ' - at index: ' + str(i))
Change detected in data: 69 - at index: 1055
EDDM (Early Drift Detection Method)

- Method to detect changes in the distribution of the training examples which monitors the online error-rate
- Learning takes place in a sequence of trials
- When a new training example is available, it is classified using the current model.
- Warning level and Drift level are defined
- A new context is declared, if in a sequence of examples, the error increases reaching the warning level at example Kw, and the drift level at example Kd.
- This is taken as an indication of a change in the distribution of the examples.
- Works well with and gets good results with slow gradual changes

https://www.es.upc.edu/~abifet/EDD
EDDM - Early Drift Detection Method

In [2]:

```python
>>> # Imports
>>> import numpy as np
>>> from skmultiflow.drift_detection.eddm import EDDM
>>> eddm = EDDM()
>>> # Simulating a data stream as a normal distribution of 1's and 0's
>>> data_stream = np.random.randint(2, size=2000)
>>> # Changing the data concept from index 999 to 1500, simulating an increase in error rate
>>> for i in range(999, 1500):
...     data_stream[i] = 0
>>> # Adding stream elements to EDDM and verifying if drift occurred
>>> for i in range(2000):
...     eddm.add_element(data_stream[i])
...     if eddm.detected_warning_zone():
...         print('Warning zone has been detected in data: ' + str(data_stream[i]) + ' - of index: ' + str(i))
...     if eddm.detected_change():
...         print('Change has been detected in data: ' + str(data_stream[i]) + ' - of index: ' + str(i))
```

Warning zone has been detected in data: 1 - of index: 69
Warning zone has been detected in data: 0 - of index: 70
Warning zone has been detected in data: 0 - of index: 71
Warning zone has been detected in data: 1 - of index: 72
Change has been detected in data: 1 - of index: 73
Change has been detected in data: 1 - of index: 131
Some advanced methods

- Handling concept drift using Instance Weighting
 - Weighting by:
 - Age
 - Relevance to the current concept.

- Handling Concept Drift using Ensemble Learning
 - The Very Fast Decision Tree (VFDT) Algorithm
 - Ensembles of Classifiers
 - Support Vector Machines
To summarize

- Concept Drift is Real, and is a challenge!
- Most of the algorithms for handling concept drift consider incremental (online) learning environments as opposed to batch learning.
 - Because real life data often needs to be processed in an online manner.
 - Data Streams -> incremental learning
 - Databases -> batch learning
- Acknowledging that models must/will evolve continuously is the key to understand and fix concept drift
References/Bibliography

- https://www.dataversity.net/handling-concept-drift-in-interventional-machine-learning-systems/
- https://github.com/topics/concept-drift
- https://github.com/ogozuacik/concept-drift-datasets-scikit-mutiflow
- https://scikit-multiflow.github.io/scikit-multiflow/documentation.html#module-skmultiflow.drift_detection
- https://www.cs.auckland.ac.nz/courses/compsci760s2c/lectures/YunSing/conceptdrift.pdf